Oklahoma Prescribed Burning Handbook

John R. Weir
Research Associate
Natural Resource Ecology and Management

Dwayne Elmore
Assistant Professor and Extension Specialist
Natural Resource Ecology and Management

Terrence G. Bidwell
Professor and Extension Specialist
Natural Resource Ecology and Management

David M. Engle
Professor and Director
Water Research and Extension Center

J.D. Carlson
Associate Researcher
Biosystems and Agriculture Engineering

Samuel D. Fuhlendorf
Professor
Natural Resource Ecology and Management
Table of Contents

Fire Effects... 1
Prescribed Fire Weather... 10
Fuel Moisture.. 19
Fire Law/Fire Plans .. 22
Prescribed Fire Safety ... 26
Firebreaks... 31
Prescribed Fire Equipment.. 36
Smoke Management .. 40
Prescribed Fire Association .. 44
Oklahoma Prescribed Fire Council 46
Notes.. 47
Burns Conducted.. 50
Burns Assisted With .. 53
Training and Workshops Attended 56

We are always striving to better serve our stakeholders’ needs. Please provide us feedback about this NREM document by completing a brief survey on the website: http://www.dasnrdasnr.okstate.edu/nremsurveys/ned. It should only require a couple of minutes of your time, and no identifying information will be asked of you. Your comments will be used to provide a higher quality of service in the future. Thank you.
Fire Effects

The frequency, intensity, and season of fire is second only to precipitation in terms of vegetation response. In other words, if it does not rain, nothing will grow whether it was burned or not. The amount of time since a fire is the most important factor of a fire’s impact on vegetation structure and composition. Time of year (season) has minimal impact on the native plant community.

Fire Effects on Major Trees and Shrubs

Non-sprouting: These are woody plants fire will kill if the above ground portion is heated sufficiently (i.e. all the growing points are killed or the cambium is killed).

- Eastern Redcedar (*Juniperus virginiana*)
- Cottonwood (*Populus deltoides*) mature trees when exposed to extreme heat (i.e. understory of eastern redcedar that burns)
- Loblolly Pine (*Pinus taeda*) trees <12’ tall or <4” dbh
- Mockernut Hickory (*Carya tomentosa*)

Sprouting: These are woody plants top killed by fire, but come back from stump or root sprouts. Fire will normally reduce plant height, percent canopy cover and volume. Stem density usually increases after fire. Some of these plants are vigorous resprouters and will recover to pre-fire status in three years or less. Others are slower to return, such as sand plum, but they will recover. Depending upon objectives, a three year or less fire return interval is recommended for most woody plant species to maintain at appropriate levels.
Fire Effects Websites

OSU NREM Fire Ecology
(http://fireecology.okstate.edu)

Fire Effects Information System
(www.fs.fed.us/database/feis)

Fire Frequency

Fire frequency is the key to managing woody plants. Fire is not a one-time tool, it is a management program. One year of fire will not change years of fire suppression. With the appropriate fire frequency (based on objectives), the native plant community can be maintained as a forest, a woodland, a savannah, a shubland, or a grassland. Thus, depending on the objectives (such as wildlife, brush control, forage production for livestock, etc.) land can be molded to meet landowner goals.
Fire Effects

Fire frequency is the key to land management. From the top: A) no burn, B) 3 yr burn frequency, C) 2 year burn frequency, D) 1 year burn frequency for the past 20 years in Oak-Pine forest of SE Oklahoma.

Fire Effects on Wildlife

White-tailed Deer

White-tailed deer have a diverse diet and occur in many different habitats. However, they are primarily browsers that consume shrubs and young woody vegetation, vines, forbs, and a limited amount of grass. Acorns and soft mast (fruit) are seasonally important. To be accessible, these plants must be at or near ground level (<6 feet). Many of the desired plants for deer need ample sunlight to grow. Thus, closed canopy forest and redcedar dominated rangelands provide little forage or browse for deer. Fire can be used to open up forest canopy and to stimulate growth of desirable plants for deer. A fire frequency of 4 years or less will accomplish this on many sites in Oklahoma. Longer fire frequencies may be appropriate, as long
as redcedar does not dominate (usually after 7 years). The size of a burn unit can be quite large for deer as their home ranges usually cover several miles. Thus, burns up to a section (640 acres) in size are appropriate, although larger burns may be warranted under some conditions.

Wild Turkey
Wild turkey require varied habitat depending on the season of the year. In the spring, they seek out areas with abundant forbs and insects to feed. These same areas are important for poults after hatching. A recently burned area will provide this type of vegetation. A portion of the property should be burned annually to provide for the brood cover needed for turkey. Up to half of the area would be appropriate on most properties, as long as adequate cover is available for

This forested area is burned every 4 years and provides good habitat for white-tailed deer. Notice the abundant available browse.
that year. Turkeys will use brood habitat throughout the summer. As fall approaches and mast begins to drop, turkeys use forest edges more and will gradually flock up in hardwood draws for the winter. They will use many species of trees for winter roosting, as long as the understory is not occupied by redcedar. Thus, riparian draws should be periodically burned to keep redcedar from encroaching (at least every 7 years).

Immediately following a fire, there will be a response of forbs and legumes, such as this showy partridge pea, that are beneficial to wild turkey. Many of these beneficial plants decrease over time in the absence of fire.
Bobwhite Quail

Quail, like turkey, require a diverse habitat that contains forbs, grasses, and some woody thickets. During the spring, quail seek out areas with last year’s grass cover for nesting. Thus, having some areas not burned that year is beneficial for nesting quail. However, once the chicks hatch, they need a forb rich area to find insects and cover. This vegetation should be open at ground level with limited litter as to not impede chick movement. Recently burned areas provide this type of habitat. On sandier soils in western Oklahoma, this type of vegetation persists for many years following fires, but in the eastern portion of the state grass and litter cover builds quickly. Thus, fire frequency should be shorter as you move east. In fact, fire frequency of two to three years is appropriate in eastern Oklahoma, while fire once every seven years may maintain habitat conditions in the far western portions of the state. Woody cover (thickets) must be maintained. Many woody plants resprout quickly following fire. But in areas with very frequent fires (such as two years), protecting some of the woody cover is beneficial to quail. The size of a burn unit for quail should match their home range, which is generally small. Burns of 25 to 100 acres would be ideal, although this may not always be possible for safety and cost reasons. Note: it is more important to burn quail habitat, even if you must burn large areas, to keep redcedar to a minimum. Once redcedar becomes dominant, quail numbers decline.
An example of a diverse plant community maintained by fire. Note the cedar skeletons and abundant forbs 6 months after the burn. This is excellent quail habitat.

Fire and Food Plots

Many landowners spend considerable effort and money on food plots to attract wildlife. However, as noted above, fire promotes plants that wildlife prefer for food. Thus, a burned plot of any size is a food plot. Strategic placement of burned areas can provide excellent hunting for deer, turkey, and quail. Additionally, a late summer fire can produce a September dove field. These growing season fires are often dominated by plants highly preferred by dove. Using fire to produce food plots is not only cost effective, but also meets other land management goals.

Fire Effects on Erosion

Research has shown that soil loss following fire are insignificant and should not be a concern.
Fire and Grazing

Selecting the proper stocking rate is the most important consideration in grazing management. Some land managers believe that higher stocking rates are better, but research and ranch budgets have shown that maximum net return per acre occurs at a moderate to light stocking rate.

Land managers should ask the question is grass fuel, forage, or habitat? If thought of as forage only, there will not be enough fuel to burn. Deferment of grazing before conducting prescribed burns is not necessary if a proper stocking rate is used. If you don’t have enough fuel to burn, you are overstocked and losing income on your livestock enterprise.

Maximum return per acre occurs at a moderate stocking rate, which incidentally allows for adequate fuel accumulation for conducting prescribed burns.

Additionally, with the proper stocking rate there is no need to withhold livestock from burned pastures. Cattle will graze on the new high quality forage following a prescribed fire until a newer burned area is available. Thus, the land manager should be burning some portion of the grazed land every year, and move cattle around on the property and providing rest on the unburned portions of the land for fuel accumulation.
This is called patch burning and it is an effective way to manage forage for cattle, fuel for fire, and habitat for wildlife. To learn more about this concept see OSU Extension circular E-998 Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity or visit the OSU Natural Resource Ecology and Management Fire Ecology Web site http://fireecology.okstate.edu

EASTERN REDCEDAR AND FIRE

Forage/Fuel Loss

Cedar severely limits forage/fuel production beneath its canopy. It has been shown that 250 large trees per acre will cut forage/fuel production by half.

If fire is suppressed from a site for several years (usually 7 to 10 years) cedars become tall and dense enough that fire alone may not kill them. The following are general guidelines on the effectiveness of fire to remove redcedar.

Trees <1 ft. tall = 100 percent control with 2,000 lbs/acre of fine fuel
Trees 1 to 5 ft. tall = 95 percent control with 4,000 lbs/acre of fine fuel, only 60 percent control with 2,000 lbs/acre of fine fuel

Forage production starting with 200 trees per acre and ending with 470 trees per acre reduces forage production by half. With the use of prescribed fire this can be reversed.
Prescribed Fire Weather

Weather Conditions for Conducting Prescribed Burns

Potential fire prescription variation for conducting a prescribed fire:
- Temperature: 30 to 110°F
- Relative Humidity: 10 to 80 percent
- Wind Speed: 4 to 25 mph
- Season of Year: Winter, Spring, Summer or Fall

Prescriptions will vary with each burn unit, fire boss and crew experience, equipment, areas surrounding burn unit, firebreak, and fuel type.

General Guidelines

Rule 1. For those in the process of learning to burn or with limited experience, use the 60:40 rule. The 60:40 rule states you burn with a temperature <60°F, a relative humidity (RH) >40 percent and a wind speed of 5 to 15 mph measured at six feet above the surface of the ground.

Rule 2. Rule of halves. This rule is used in the field to predict changes in relative humidity and corresponding fire behavior. When the air temperature increases by 20°F, the RH will typically decrease by 50 percent. For example, if the temperature changes from 60°F with 40 percent RH to 80°F, the RH will change from 40 percent to 20 percent. A fire that can be conducted safely at 40 percent RH may pose a safety risk at 20 percent.

Rule 3. Do not burn if there is a forecasted frontal passage or wind shift within 12 hours.
Rule 4. If the conditions are not right, including all parts of the prescription (adequate personnel, equipment, weather conditions, etc.), do not start the fire. Wait until everything is right.

Rule 5. If the fire is not going well, put it out. This could be due to spot fires, creep-overs, equipment problems, extreme fire behavior, utilizing too much water, or resources stretched too thin.

Rule 6. Do not leave the fire until it is completely out, which means there is no smoke or embers along the edges of the burn unit.

Spotfires

Spotfires are fires that occur outside the burn unit. They can be caused by crowning eastern redcedar, brush piles on the edge of the burn unit, leaf litter blowing across the firebreak, smoke or fire whirls, low relative humidity, or improper firebreaks.

Do not burn within 12 hours of a predicted frontal passage or wind shift; remember the wind shift arrival time is only forecasted and may arrive sooner than predicted.
Spotfires are started by numerous causes, fire whirls like the one pictured above can leave the burn unit igniting a fire outside the planned burn area. Fire personnel should know what causes spotfires and be prepared.

SPOTFIRES AND RELATIVE HUMIDITY

Spotfires are more prevalent when the relative humidity is below 40 percent.

Number of spotfires on 99 prescribed burns with the corresponding minimum relative humidity. Of the 21 burns that had spotfires (gray) only two occurred when the relative humidity was greater than 40 percent.
Percent probability of a spotfire occurring at a given relative humidity.

With knowledge of the probability of spotfire occurring, personnel can determine necessary crew size and equipment. Inexperienced burn bosses should use this data to help reduce risk (liability) and increase safety for their crews. The most important point is to burn when conditions are safest for the crew and surrounding neighbors.

Fire Prescription Planner

The “Fire Prescription Planner” in OK-FIRE (http://okfire.mesonet.org) allows the fire manager to specify lower and/or upper limits for various variables pertaining to weather, dispersion conditions, dead fuel moisture, and fire danger. After the prescribed values are entered, the user chooses the Mesonet site closest to the burn unit. Using output based on the latest 84-hour forecast, a table will be produced. The Planner, as is the case with other OK-FIRE products, is based solely on one particular forecast model (the North American Model or NAM). As with all forecast models, the NAM, while a good model, is never perfect and users are strongly encouraged to check the official National Weather Service (NWS) forecasts.
Weather Sources

For any discrepancies with the NAM. To get an hour-by-hour NWS forecast, click on the “National Weather Service” link in the Weather/Forecasts section of the OK-FIRE web site. Once on the home page of the particular weather forecast office (WFO), click on the geographical point of interest. On the resulting page that appears, scroll down to the bottom and select “Hourly Weather Graph” or “Tabular Forecast” to get an hourly forecast in either graphical or tabular format, respectively.

Weather Sources

- OK-FIRE (http://okfire.mesonet.org)
- Oklahoma Agweather (http://agweather.mesonet.org)
- National Weather Service Fire Weather Forecasts (www.weather.gov)

Fire Prescription Planner from the OK-FIRE Web site. This allows fire managers to specify various weather variables and determine burn conditions up to 84 hours in advance.
• National Weather Service Oklahoma (www.weather.gov)
• Weather Underground (www.wunderground.com)
• Intellicast (www.intellicast.com)
• AccuWeather (www.accuweather.com)
• Weather Channel (www.weather.com)

Burn Days

Weather constraints limit the number of days prescribed fires can be safely conducted. We have determined there about 222 days per year in which prescribed burns can be safely conducted (from Oklahoma Mesonet at a site in north central Oklahoma). December through April is the worst time of the year to conduct prescribed fires due to variable weather conditions and burn bans. July through September is the best period to conduct burns due to stable weather patterns and conditions. The data also shows that there are more hours per day available to burn during July to September, than December to April. Wind direction is also a concern regarding timing of burns. For more opportunities to conduct prescribed burns fire managers should consider burning in different seasons of the year.
The average number of burn days per month using the following weather parameters: temperature between 30°F to 110°F, relative humidity of 25 to 80 percent, wind speeds at 4 to 15 mph, no precipitation during the time period, and there must be a minimum of a three-hour consecutive block of these conditions for that day to be considered a burn day.

The average number of burnable hours per day by month using the same weather parameters as above.
Burning Brush Piles

As a general rule, eastern redcedar trees and brush should never be cut, dozed, or piled prior to a prescribed burn. This will only complicate the burn and increase the chance of an escaped fire. Brush piles

There may be a need to doze or cut eastern redcedar around the boundary of the burn unit. This will make the burn safer. Keep the piles small and push them at least 300 ft into the burn unit.
can cause spotfires up to 500 ft. downwind. However, you may need to doze or cut trees around the boundary of the burn unit to prevent spotfires. This will make the burn safer, but be sure to push and spread the brush into the burn unit. If piling is absolutely necessary, then push the piles 300 ft. into the burn unit and keep the piles small.

There also are some economic benefits to not cutting down eastern redcedar until after you burn. If you burn first, the fire should kill many of the eastern redcedar depending upon tree height and fuel load. You can then remove only the eastern redcedar trees that did not burn or brown out. This will reduce costs.

The best time to burn brush piles is after the prescribed fire when fuels are low. We have found the safest time to burn brush piles is in May and June. During this time, most vegetation is green and will not burn well. Care should be exercised when burning brush piles in areas that have been ungrazed or lightly grazed. Have suppression equipment available on site anytime you burn. Remember brush piles can smolder for many days so keep track of the weather.
Dead fuels are those wildland fuels whose moisture contents are controlled exclusively by changing weather conditions. Examples include dead herbaceous fuels, dead roundwood, fallen dead leaves and needles, and the litter of the forest floor. For purposes of fire behavior modeling, dead fuels are divided into four “timelag” categories: 1-hour, 10-hour, 100-hour, and 1000-hour fuels. The shorter the timelag, the more responsive the fuel is to changing weather conditions. For Example one-hour fuels only take on the order of one hour to respond to changing weather conditions, which explains why fire danger can be very high even right after a heavy rain if the subsequent weather conditions allow the 1-hour fuels to dry out.

Samples are taken from standing dead trees, shrubs, or grasses. Dead fuel moisture can also be calculated from observed or forecast weather data. Model calculations of 1-, 10-, 100-, and 1000-h dead fuel moisture are routinely made at all Oklahoma Mesonet weather tower sites and can be found in the “FIRE” section of OK-FIRE (http://okfire.mesonet.org) under “Current/Recent Fire Danger” and “Fire Danger Forecasts”.

Fuel moisture readings can be found in the “FIRE” section of OK-FIRE under “Current/Recent Fire Danger” and “Fire Danger Forecasts.” at http://okfire.mesonet.org.
One-hour fuels are <0.25” in diameter (also dormant grasses).

Ten-hour fuels are 0.25” to 1” in diameter (also leaf litter and pine needles).

One hundred-hour fuels are 1” to 3” in diameter.
Recommended Fuel Moisture Conditions for Conducting Prescribed Fires

You should burn when 1-hour fuels are between 7 to 20 percent.
- 1-hr fuels <5 percent: spotfires certain
- 1-hr fuels >11 percent: spotfires rare
- 1-hr fuels >20 percent: fire may not spread

10-hour fuels burn best when between 6 to 15 percent moisture
- 10-hour fuels >15 percent: fire may not burn in certain fuel types.
FIRE LAW/FIRE PLANS

In Oklahoma, it is lawful to burn and is considered a property right if conducted properly. The person conducting the burn is considered liable if the fire escapes. Though you are only considered civilly liable for the amount of actual damages only if you follow the guidelines stated within the law. A person can be considered criminally liable if found to have committed gross negligence in setting the fire.

HOW DO I BURN PROPERLY?

Have a written burn plan, take reasonable precautions against the fire spreading to other lands, and provide adequate firebreaks, manpower and fire fighting equipment. Stay with the fire until it is extinguished, which means there is no smoke or embers along the edges of the burn unit. Notify local Oklahoma Division of Forestry representative at least four hours in advance in forest protection areas of eastern Oklahoma. Within 60 days of conducting the fire, notify orally or in writing all adjoining landowners. Include proposed date, location and contact number. Complete the prescribed burning notification plan and submit to local fire department and in forest protection areas to the Oklahoma Forestry Division representative, as well as keeping a copy for your records. Within 48 hours of conducting the burn, notify the local fire department and/or local Forestry Division representative if in protection area.

This is not intended to be used as a substitute for the law. Read and know the law before conducting any prescribed fire. For a copy of the burn law and prescribed burn notification plan go to:

COUNTY BURN BANS

In 2008, county commissioners and local fire chiefs were granted the authority by state law to declare a county burn ban. The law reads as follows:

“It is unlawful for any person to set fire to any forest, grass, range, crop or other wildlands, or to build a campfire or bonfire, or to burn trash or other material that may cause a forest, grass, range, crop or other wildlands fire in any county of this state in which the board of county commissioners of the county has passed a resolution declaring a period of extreme fire danger. As used in this subsection, “extreme fire danger” means:

a. moderate, severe or extreme drought conditions exist as determined by the National Oceanic and Atmospheric Administration (NOAA) pursuant to its criteria, and

b. no more than one-half (1/2) inch of precipitation is forecast for the next three (3) days, and

c. fire occurrence is significantly greater than normal for the season and/or initial attack on a significant number of wildland fires has been unsuccessful due to extreme fire behavior, and

d. more than twenty percent (20 percent) of the wildfires in the county have been caused by escaped debris or controlled burning.

A majority of the board of county commissioners may call an emergency meeting at any time to pass or revoke a resolution declaring a period of extreme fire danger in accordance with this section.

A board of county commissioners shall have the documented concurrence of a majority of the chiefs, or their designees, of the municipal and certified rural fire departments located in the county that a period of extreme fire danger exists prior to passage of a resolution declaring a period of extreme fire danger in the county. The resolution shall be effective for a period not to exceed seven (7) days from the date of passage by the board of county commissioners, unless the
burn ban is removed earlier by the same method by which it was approved. If extreme fire danger conditions persist, subsequent resolutions may be passed by the board of county commissioners in the same manner as provided in this paragraph. The board of county commissioners, in the resolution, may grant exceptions to the fire prohibition based on appropriate precautionary measures.

Burn Plans

Every prescribed burn should have a written burn plan. The burn plan allows you to set goals and have a prescription for each burn. It also lets the burn boss make operational and contingency plans prior to the burn. If a liability issue arises, the burn plan demonstrates due diligence by the person conducting the burn.

Items that could be included on a burn plan:
- Description of burn unit – physical and legal
- Objectives of burn – why and expectations
- Maps/photos of burn unit
- Prescription parameters
- Observed weather conditions
- Firebreak types
- Ignition plan – written and map
- Smoke management plan – written and map
- Contacts – fire dept, neighbors, sheriff dept, etc.
- Hazards within burn unit
- Crew members present
- Equipment present
- Escaped fire plan
- Mop-up plans
- Date of preparation
- Preparer’s signature

Sources of burn plans:
- Oklahoma Prescribed Fire Council Web site
 www.oklahomaprescribedfirecouncil.okstate.edu
• OSU Extension Publication E-927 Using prescribed fire in Oklahoma
 http://nrem.okstate.edu/Extension/pubs.html

• OSU Cooperative Extension county office

• USDA-NRCS county office
Proper clothing for prescribed burning

Proper clothing includes long sleeve shirts and long pants that are free of holes, rips, and tears. They should be made of 100 percent cotton, wool, NOMEX™, or Indura™ cotton. Do not wear any clothing made of nylon, polyester, or other synthetic material. Gloves should be all leather and not oil tanned. Goggles should be worn to protect eyes from smoke, embers, and debris. Footwear should be comfortable and provide protection from heat and uneven surfaces. A helmet is recommended, especially if working in areas with trees. Personnel with long hair should secure it and place inside shirt or under helmet or hat.
Prescribed Fire Orders

Read over the burn plan and go over the burn unit before you begin.

Extinguish all smoldering objects around the fireline after the burn.

Fire should be set as quickly as possible, but provide for safety first.

Initiate all actions based on current and expected fire behavior.

Recognize current weather forecasts and conditions and obtain information on weather often.

Ensure instructions to crew members are given and understood.

Obtain current information on prescribed fire status during burn.

Remain in communication with all crew members.

Determine proper ignition technique and deployment of personnel and equipment for each burn.

Establish lookouts in potentially hazardous situations.

Retain control at all times.

Stay alert, keep calm, think clearly, act decisively.

Prescribed Burn situations that shout “watch out”

If any of these situations are encountered on a burn they should be watched or changed to prevent injury to personnel or the fire escaping.

- Burn unit not scouted and sized up.
- Burn unit not seen in the daylight.
- Problem areas and potential spotfire areas not identified.
- Unfamiliar with weather and local factors influencing fire behavior.
- Uninformed on prescribed fire strategy, tactics, and hazards.
- Instructions and assignments not clear.
- No communication link with crew leaders and members.
- Fire break not constructed to bare ground or mineral soil.
• Lighting fire uphill.
• Attempting to burn strips on backfire that are too wide.
• Unburned fuel in backfire area.
• Cannot see down the fireline and not in contact with anyone who can.
• Burning within 12 hours of a predicted frontal passage or wind shift.
• Weather is getting hotter and drier.
• Wind increasing and or changing direction.
• Getting frequent spotfires across the firebreak.
• Fire break, terrain, or fuels too rough for pumper trucks to enter.
• Stopping to eat lunch.

GO/NO-GO CHECKLIST
(use before each burn to make sure everything is ready)

☐ Fire plan prepared?
☐ Prescribed burn notification plan completed and submitted to local fire department and division of forestry official (if in protection area)?
☐ Have all required notifications been made (fire dept, neighbors, etc)?
☐ Are all weather parameters met?
☐ Have all current and projected weather forecasts been obtained and are they favorable?
☐ Adequate personnel available for burn?
☐ Equipment operational and available?
☐ Smoke management guidelines met?
☐ Have all personnel been briefed on objectives, assignments, tactics, hazards and safety?
☐ In your opinion can the burn be conducted safely according to the fire plan and will the burn meet the planned objectives?

If the answer to all of these questions is YES, then proceed with burn. If the answer to any of these questions is NO, make corrections or plan the burn for another day.
HAND TOOL SAFETY

- Use the proper tool for the job.
- Make sure tools with an edge are sharp.
- Carry next to the body by the handle, near the head of the tool.
- Do not carry over the shoulder.
- Carry handtools on the downhill side when walking across slopes.
- Keep safe distances among personnel using handtools.

Do not carry handtools over the shoulder and always keep a safe distance between personnel using them.

VEHICLE SAFETY

- Once the fire starts, do not turn vehicle or pump off.
- Turn headlights on.
- Do not drive too fast along firebreaks, even if going to an escaped fire. Remember there are other personnel working there also.
- Do not drive into areas of thick smoke. Think about who or what may be in it or on the other side?
- Make sure hoses, nozzles, and equipment are secure in the back of the truck.
Do not drive too fast along firebreaks, even if going to an escaped fire. Remember other personnel are working there as well.
Firebreaks help delineate the boundary of the burn unit and reduce the fuel along edge of the unit to make ignition easier. Additionally, firebreaks are used for access by personnel and equipment. Firebreaks should be to bare ground or mineral soil, yet constructed to not cause erosion problems.

Establish permanent firebreaks, remember, prescribed fire is not a one time treatment.

Firebreak Width

In general, the width of the firebreak on the downwind side of the area to be burned should be 10 times the height of the flammable vegetation within the burn unit. Firebreaks are usually a combination of bare ground, mowed strips, and backfired or blackened strips. If the firebreak is insufficient, you may experience an escaped fire. Some recommended widths of blackened areas are:

- Grass fuels only = 100 ft
- Grass fuels with cedar = 300 ft
- Grass fuels with sand shinnery oak = 200 ft
- Grass fuels with sand sage brush = 200 ft
- Forest understory of leaf litter fuels = 50 ft
- Forest understory of leaf litter fuels with cedar = 300 ft
Firebreaks allow access for personnel and equipment

Firebreak Types

Mowed lines/wet lines

Require more personnel, equipment, water, and takes longer to conduct fire. They also are risky without a high level of experience.

Cattle trails

Use mowing to reduce fuel loads next to cattle trails.

Mowed firebreak with water being applied just before ignition. The area to the left of the person is the burn unit.
Roads, paved, county, two track or feed roads
Make sure smoke and traffic will not be an issue.

Road being used as a firebreak on this large prescribed burn.

Dozed lines
These are scraped to mineral soil to remove fuels.

Dozed firebreaks allow for access of personnel and equipment in complex terrain.
Disked lines
Be sure to mow and then disk the area twice to ensure there is no continuous fuel in the line.

Example of well constructed disked firebreak.

Leaf blower or raked lines
These work well for short distances in forested areas where fuel levels are low.

Natural barriers
Creeks, rivers, lakes, cultivated fields, forest edges can be used to minimize cost, effort, and erosion potential.
If using a draw or canyon as a firebreak, make sure that the fire cannot get across the firebreak. Always inspect the entire perimeter of the burn unit prior to ignition.
Prescribed Fire Equipment

Drip Torch Use and Operation

Set up
Place torch on the ground and unscrew locking ring, then remove and secure flow plug from bottom of spout. Pull spout assembly out of torch body and allow excess fuel to drain back into torch. Place spout assembly in upright position on torch, with loop in spout on opposite side of handle. Place lock ring over spout and secure snugly on torch. Open air vent on top of torch by handle one turn. To store torch reverse steps once wick and spout has cooled significantly.

Operation
Grasp by the handle and tip the torch downward allowing fuel to flow over the wick. Allow a small amount of fuel to collect on the ground and ignite with match or lighter. Then place wick of torch in flames to ignite. To operate, tip downward and walk. To stop ignition, lift torch up.

Extinguishing
The flame can be extinguished by holding the torch upright and blowing or by covering the flame with the gloved hand, or a combination of both.

Safety
The person operating the drip torch should always be aware of their surroundings. Watch for other personnel and do not trap them with your fire. Do not get close to personnel with a lit torch and be careful around vehicles. A lit torch should always be carried upright when not lighting. The torch should never be taken outside the burn unit when lit. Torches should be extinguished if you stop lighting for any period of
The drip torch is a safe and effective tool for igniting prescribed fires.

time. This helps save the wick and keeps the torch from becoming hot and not operating properly. When refueling torch, make sure to do so in an area off the active fireline and away from crowning trees and blowing embers.

Fuel Mix
- Winter, Fall, and Spring = 50:50 diesel:gasoline,
- Summer = 60:40 or 70:30 diesel:gasoline.

Hand Tools for Prescribed Burning

Shovel
- Used for making firebreaks, suppression of fire in light fuels, covering smoldering debris with soil, mop-up or assisting with removal of stuck vehicle.

Fire Rake or McLeod
- Used for making firebreaks, suppression of fire in light fuels and post burn mop-up.
Leaf Rake
Used for making firebreaks, suppression of fire in light fuels, and post burn mop-up. Works well in areas with surface rock.

Fire Broom
Used to suppress fire in light fuels and post burn mop-up.

Swatter
Used to suppress fire in light fuels and post burn mop-up.

Backpack pump
Used to lay wetline in places a pumper truck cannot get to, suppression of fire, follow up pumper trucks on escaped fires and post burn mop-up.

Leaf blower
Creates firebreaks in leaf litter, suppression of fire in light fuels, and post burn mop-up. Caution: make sure to blow embers back into blackened area.
Leaf blower being used to mop-up along the edge of the burn unit. Make sure to blow embers and debris back into the blackened area.
“Category day” is a system that was developed to determine the ability of the atmosphere to handle smoke through the depth of the mixing layer above the earth’s surface. It is based on “ventilation rate”, which is the mixing height in meters multiplied by the transport wind speed in meters per second. The greater the ventilation rate, the greater the ability of the atmosphere to ventilate the smoke and get it out of the area. The table below relates ventilation rate to category day, along with burning guidelines. Category day and ventilation rate information can be found at the fire weather forecast websites of the National Weather Service discussed earlier.

<table>
<thead>
<tr>
<th>Category Day</th>
<th>Ventilation Rate</th>
<th>Burning Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td><2,000</td>
<td>No burning</td>
</tr>
<tr>
<td>II</td>
<td>2,000-4,000</td>
<td>No burning until 11 a.m. and not before surface inversion has lifted.</td>
</tr>
<tr>
<td>III</td>
<td>4,000-8,000</td>
<td>Fire out by 4 p.m. Daytime burning only after inversion has lifted.</td>
</tr>
<tr>
<td>IV</td>
<td>8,000-16,000</td>
<td>Burn anytime.</td>
</tr>
<tr>
<td>V</td>
<td>>16,000</td>
<td>Unstable and windy. Excellent smoke dispersal. Burn with caution.</td>
</tr>
</tbody>
</table>
Good smoke dispersal occurs when burning on category III days or higher.

Oklahoma Dispersion Model in OK-FIRE

This model was developed to assess surface dispersion conditions several miles downwind. It breaks the atmosphere in six dispersion categories:

1-Very Poor (VP)
2-Poor (P)
3-Moderately Poor (MP)
4-Moderately Good (MG)
5-Good (G)
6-Excellent (EX)

The lower end of this scale typically occurs with inversion conditions, which inhibit mixing and causes poor dispersion. During such conditions, the smoke plume hangs together as it drifts downwind and anyone caught near the plume centerline could be smoked out. The upper end of this scale typically occurs with unstable atmospheric conditions, when the dispersion is good, both in the vertical and horizontal directions.
How to Minimize Smoke Problems

Current and forecasted smoke dispersion information can be found in the SMOKE section of the OK-FIRE Web site located at: http://okfire.mesonet.org.

Example of smoke dispersion conditions from OK-FIRE Web site. Red is poor and the greens range from moderately good to excellent, which are preferred for adequate smoke dispersal.

HOW TO MINIMIZE SMOKE PROBLEMS

• Burn smaller burn units.
• Burn when weather conditions are forecast to produce the best dispersion. Consult both the category day forecast as well as the Oklahoma Dispersion Model forecast in OK-FIRE.
• Burn when fuel conditions are likely to produce the least amount of smoke. This can be accomplished by selecting the correct combination of fuel moisture and fuel size class that needs to be removed or by the fuel type (i.e. leaf litter, grass fuels, amount of cedar in unit).
• Use appropriate ignition techniques for smoke management. Consider using backfires to reduce the amount of smoke or mass ignition devices such as heli-torch or Delayed Aerial Ignition Device for larger burn units.
• Conduct post-burn mop-up to reduce nuisance smoke. Outline actions to be taken after burn to reduce residual smoke. If post-burn smoke could be a problem, be sure to monitor unit to suppress any fuels that begin to smolder.
• Reduce the amount of fuels in burn unit to reduce smoke emissions. This can be accomplished by burning frequently, grazing, or haying.
• Reduce the impact of smoke on people. Be sure to notify all people downwind that could be affected by the smoke and use appropriate signage to inform the public about areas were smoke will impact them.

Remember that even when the smoke leaves the burn unit, it is still your smoke and you should do everything possible to reduce the smoke impact outside of the burn unit.
A Prescribed Fire Association is a group of landowners and other concerned citizens that form a partnership to conduct prescribed burns safely.

These partnerships are beneficial because the members can share equipment and labor, and it provides training for the members. Finally, it fosters good relations between neighbors and within the community in regards to the use of and need for prescribed fire.

Guidelines for Prescribed Fire Associations

Burn Associations should elect officers and a board of directors if multiple area/counties are involved. Officers should consist of landowners/lessees, agency/university personnel can only provide technical assistance. Dues should be established to buy equipment for the association, and a fire training school should be planned annually.

Remember, the landholder still assumes liability for fire and must show proof of insurance before the burn. The landholder also is responsible for preparing firebreaks and they must be adequate. You should set a minimum number of personnel that must be present on each burn. Make sure you have an inventory of what equipment is available. Finally, members should assist with a certain number of burns before their land is burned.
1. Big Pasture Prescribed Burning Association
2. Northwest Range Fire Management Association
3. North Central Range Improvement Association
4. Cross Timbers Prescribed Burn Association
5. Arbuckle Restoration Association
6. Cimarron Range Preservation Association
7. Roger Mills Prescribed Burn Association
8. South Canadian Prescribed Burn Association
9. Salt Creek Prescribed Burn Association
10. Northern Pottawatomie Prescribed Burn Association
11. Canadian Rivers Prescribed Burn Association
12. Indian Territory Prescribed Burn Association
13. Tallgrass Prairie Preserve Prescribed Burn Association
14. J.T. Nickel Preserve Prescribed Burn Association
15. Pontotoc Preserve Prescribed Burn Association
16. Four Canyon Prescribed Burn Association

In Oklahoma, there are currently (2009) 16 prescribed burn associations that cover 30 counties and have more than 350 members. In 2008, six of the most active associations safely conducted 78 burns on more than 50,000 acres.

Visit the Oklahoma Prescribed Fire Council Web site to learn more about associations in your area or to learn how to form one.

www.oklahomaprescribedfirecouncil.okstate.edu
MISSION STATEMENT

To promote the implementation of prescribed fire in Oklahoma as a natural resource management tool.

STRATEGIES

Education, training, legislative advocacy, facilitation of fund raising.

CHARTER MEMBERS

Natural Resource Ecology and Management Department - OSU
The Nature Conservancy
U.S. Fish & Wildlife Service - Ecological Services
OK Association of Conservation Districts
OK Conservation District Employee Association
OK Conservation Commission
OK Department of Wildlife Conservation
The Noble Foundation
OK Department of Agriculture, Food, & Forestry
USDA-Natural Resource Conservation Service

Web site has information on burn associations, fire information, fire laws and planning, and fire weather. www.oklahomaprescribedfirecouncil.okstate.edu
Burns Conducted

Pasture Name__________________________________
Acres___
Date Burned___________________________________
Conditions_____________________________________
Problems______________________________________

Pasture Name__________________________________
Acres___
Date Burned___________________________________
Conditions_____________________________________
Problems______________________________________

Pasture Name__________________________________
Acres___
Date Burned___________________________________
Conditions_____________________________________
Problems______________________________________
<table>
<thead>
<tr>
<th>Pasture Name</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pasture Name</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pasture Name</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pasture Name</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Pasture Name</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
BURNS ASSISTED WITH

Owner ___
Pasture Name ___________________________________
Acres ___
Date Burned ___________________________________
Conditions _____________________________________
Problems _______________________________________

Owner ___
Pasture Name ___________________________________
Acres ___
Date Burned ___________________________________
Conditions _____________________________________
Problems _______________________________________

Owner ___
Pasture Name ___________________________________
Acres ___
Date Burned ___________________________________
Conditions _____________________________________
Problems _______________________________________

53 burns assisted with
BURNS ASSISTED WITH

Owner ___
Pasture Name ____________________________________
Acres ___
Date Burned _____________________________________
Conditions _______________________________________
Problems __

Owner ___
Pasture Name ____________________________________
Acres ___
Date Burned _____________________________________
Conditions _______________________________________
Problems __

Owner ___
Pasture Name ____________________________________
Acres ___
Date Burned _____________________________________
Conditions _______________________________________
Problems __
Owner ____________________________
Pasture Name ______________________
Acres ____________________________
Date Burned _______________________
Conditions ________________________
Problems _________________________

Owner ____________________________
Pasture Name ______________________
Acres ____________________________
Date Burned _______________________
Conditions ________________________
Problems _________________________

Owner ____________________________
Pasture Name ______________________
Acres ____________________________
Date Burned _______________________
Conditions ________________________
Problems _________________________
<table>
<thead>
<tr>
<th>Date Attended</th>
<th>Location</th>
<th>Instructor/Agency/Organization</th>
<th>Topics covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prescribed Fire Training and Workshops Attended

<table>
<thead>
<tr>
<th>Date Attended</th>
<th>Location</th>
<th>Instructor/Agency/Organization</th>
<th>Topics covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Attended</th>
<th>Location</th>
<th>Instructor/Agency/Organization</th>
<th>Topics covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Attended</th>
<th>Location</th>
<th>Instructor/Agency/Organization</th>
<th>Topics covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prescribed Fire Training and Workshops Attended

<table>
<thead>
<tr>
<th>Date Attended</th>
<th>Location</th>
<th>Instructor/Agency/Organization</th>
<th>Topics Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

58 Prescribed fire training and workshops attended
Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Title IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, gender, age, religion, disability, or status as a veteran in any of its policies, practices or procedures. This includes but is not limited to admissions, employment, financial aid, and educational services.

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Robert E. Whitson, Director of Oklahoma Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma. This publication is printed and issued by Oklahoma State University as authorized by the Vice President, Dean, and Director of the Division of Agricultural Sciences and Natural Resources and has been prepared and distributed at no cost to the taxpayer of Oklahoma. 0509 GH.